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Transition from laminar convection to thermal 
turbulence in a rotating fluid layer 

By G. KUPPER§ AND D. LORTZ 
Institut fiir Plasmaphysik, Garching bei Munchen 

(Received 20 April 1968) 

The convective flow in an infinite horizontal fluid layer rotating rigidly about a 
normal axis is investigated for the special case of infinite Frandtl number and 
free boundary conditions. For slightly supercritical Rayleigh numbers the solu- 
tions of the non-linear steady-state equations are derived approximately by an 
amplitude expansion. A stability calculation shows that no stable steady-state 
convective flow exists if the Taylor number exceeds the critical value 2285. 

1. Introduction 
If a layer of heavy fluid is heated from below a density gradient opposite to the 

force of gravity is produced by thermal expaitsion. A dimensionless measure of 
the temperature difference AT between the top and bottom of the layer is the 
Rayleigh number R = &gaTd3/vK, 

where a is the expansion coefficient, g the acceleration of gravity, d the depth of 
the layer, v the kinematic viscosity, and K the thermometric conductivity. In  
cases where the Rayleigh number exceeds a certain critical value R, the static 
state becomes unstable and convective motions arise. 

It is well known that rotation about a norms1 axis with angular velocity GZ has 
an inhibiting effect on the onset of convection, i.e. the critical Rayleigh number 
is raised by the rotation. Here we investigate how the rotation rate described by 
the Taylor number r2 = 4 lS2I2d44/v2 

changes the stability behaviour of the steady-state convective flow. 
As in the non-rotating case the steady-state cellular convective flow is not 

uniquely determined by the equations of motion and the boundary conditions. 
In fact, if the layer is of infinite horizontal extent an infinite manifold of solutions 
is obtained. 

Solutions of the linear steady-state equations were derived by Chandrasekhar 
(1953). These are also given by Chandrasekhaz (1961) together with a compre- 
hensive bibliography. Veronis ( 1958) derived solutions of the non-linear equations 
by expanding with respect to an amplitude parameter and showed that hexagons, 
squares, and rolls are solutions of the steady-state system of equations. However, 
the rectangles treated by Veronis do not satisfy the non-linear equations. 

To sort the physically realized solutions from the manifold obtained from the 
steady-state system of equations, it  is necessary to make a stability calculation. 

39 Fluid Mech. 36 



610 G. Kuppers and D. Lortz 

As we consider types of flow of relatively low amplitude, it is reasonable to soIve 
the stability equations as well by successive approximation. 

The ensemble of possible solutions is considered for the case of an infinite 
Prandtl number and ' free-free ' boundary conditions. The steady-state and 
stability equations are solved by the method used by Schulter, Lortz & Busse 
(1965) in the non-rotating case. 

2. Fundamental equations 
With ~ / d  as velocity scale, VK/agd3 as temperature scale, d2/K as time scale and 

d as length scale and with the Boussinesq approximation, the conservation laws 
of mass, momentum and energy read in dimensionless form : 

aiuj = 0, (2.1) 

(2.2) 

(2.3) 

p-ya,ui+ujaiui) = -air + O A , + A ~ , + ~ ~ ~ ~ , U ~ A , ,  

a, o + ui a j  o = R U ~  hi + ao, 
P = V/K, R = agATd3/v~, r = 2QjAid2/v. 

We have used the summation convention and the notation 
a a, = a t 7  a a .  = - 

3 axj (j = 1,2,3). 

hi is the unit vector opposite to the force of gravity. All terms that can be written 
as gradients are summarized by ail?. 0 denotes the deviation from the linear 
temperature distribution of the static state. 

In the limit of large Prandtl number P the non-linear and time-differentiated 
terms of the momentum equation can be neglected. It is well known that the 
essential features of finite amplitude convection are still present in this limit. 
Preliminary calculations for the case of rigid boundary conditions and large, but 
finite, Prandtl number yield the same qualitative results, i.e. there is a con- 
tinuous dependence on the parameter P-I for P-l+ 0. 

The general solution of the continuity equation (2.1) for the geometry under 
consideration can be written 

t ui = s,v+ciw, 

si = aia,h,-h,a, ei = eiikhja,, 
where v and w are arbitrary functions. By applying 8, and ci to (2.2) and by using 
(2.4) in (2.3) one obtains 

AaA2v+ra,A2W-A20 = 0, (2.5) 
-7a,A2v+AA2w = 0, (2 .6 )  

(2.7) - RA,V + A@ = a, o + (sj v + Ej w) aj  o, 
A, = A -  a:=, a, = ajh,. 

To simplify the notation we introduce the matrix differential operators 

A2A2 razA, 

0 A 
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W =  

the three-component column matrices 

and the matrix /o 0 o\ 
v =  0 0 0 

(0 0 I) 
and obtain 

The steady-state system then has the form 

R wx + ux = Q ( X ,  x) + a, vx. (2.8) 

R W X +  UX = Q ( X , X ) .  (2.9) 

The stability of the solutions X of the system (2.9) is investigated by super- 
posing on the solutions X non-stationary perturbations 2 of infinitesimal ampli- 
tude and with the time dependence cut. This yields the linear stability equations 

R W X +  U X  = c ~ V X + Q ( X , X ) + & ( X , X ) .  (2.10) 

X is unstable if the system (2.10) with boundary conditions has solutions with 
a positive real part of ~ r .  

3. Boundary conditions 
The layer is of infinite horizontal extent and all functions occurring are every- 

where bounded. Suppose that at  z = f + the layer is bounded by a perfectly con- 
ducting medium. This corresponds to the boundary condition 

@ = O ,  z , + l -  - 2 ,  (3.1) 

for the temperature. Since there ought to be no shear stress in the free-free case 
one obtains the following dynamical boundary Conditions 

v = azSv = a,w = 0, z = +I - 2‘ (3.2) 

4. Small amplitude perturbation theory 
Steady-state solutions of the non-linear system (2.9) and solutions of the 

stability equations (2.10) are sought by expanding the equations for small ampli- 
tude of the steady-state solutions. This is equivalent to treating the convection 
near R = R,. We therefore expand X and R with respect to an amplitude 
parameter E as follows: 

x = EX1+€2X2+8X3+ ...) (4.1) 

R = R0+~R1+e2R2+.. . .  (4.2) 
39-2 
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Substitution of these in the system (2.9) yields a set of inhomogeneous equations 
the solubility conditions of which determine the 22,. As fz is an externally given 
parameter, (4.2) can be used for determining E .  

The stability equations are solved by expanding also r~ and r? with respect to e. 

x = xl+€X2+s2x3+ ..., (4.3) 

a = a,+ea,+€2rJ2+ .... (4.4 1 

5. Solution of the linear problem 
B, WX,+ ux, = 0. 

R, wk,+ uxl = a0vx1. 
The solutions of these equations with the boundary conditions in $ 3  are well- 
known (see Chandrasekhar (1961) and Schluter et aE. (19%)). The solution of (5.1) 
can be written in the form: 

r is a horizontal position vector and k, a horizontal wave-number vector with 
overall wave-number a. B, is given by 

R, = [(n2 + a2)3 + T ' T ~ ] / ~ ' .  (5.4) 

R, attains its minimum R, for values a: satisfying the equation 

2x3 + 3x2 = 1 + 721774, x = u:/+. ( 5 . 5 )  

I n  the following we put u = ae because this is the only case where (5.2) yields no 
instability. Then the most critical disturbance has a, = 0 and is described by 

We now define a scalar product 

( X ' , X )  = R,(v'v)m+R,(w'w),n+ (or@), 
with functions v, v r 7  w, w', 0, and 0' satisfying the boundary conditions. ( ) m  

denotes averaging over the layer. The operator U + R, W is then self-adjoint in 
the following sense 

( X ' , ( U + R , W ) X )  = { X , ( U + R , W ) X ' ) .  (5.7) 
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6. Second-order solutions 
On forming the scalar product with the inhomogeneous second-order equation 

Ro WX2 + UX2 = &(XI,  Xi) - 3 1  W X ,  (6.1) 

and an arbitrary first-order solution X i  and using the self-adjointness relation 
(5.7), one obtains the solubility condition 

0 = (x;, &V,, XI)) - R,(X;, W X , ) , )  

i x; = g 0, (n = -a,..., +a). 6 
Because of the symmetry of the function f(z) it is readily seen that the term 
( X ; ,  &(X,, X,)) is equal to zero. This gives 

0 = R,(X;, W X J  = -R1(O;A2~1),n = -R,(O;AO,),/Ro = Rl((~.jO;)~.jOl),/Ro 

and from this it follows that R, = 0. 
For R, = 0 the stability equations in the second-order are 

R, W X 2  + U X 2  = &(zl, XI) + &(Xl, 2,) + g1 VXl, 

0 = (Xi, &(L X I ) )  + (x;, &(X,, 2,)) + a,<x;, VQ. 

(6.3) 

which yield the solubility condition 

(6-4) 

The first two triple products on the right-hand side are again zero and it follows 
that c1 = 0. 

To determine R, and ~7, we calculate the solutions X ,  and g2. The equations 
for v,, w,, and 0, are 

(6 .5 )  

(As + 7, i?EB-BoA,) v2 = (Siv, + ejwl) aj O,, 

(A3 
(A3 + 72i?z ,  - BOA2) A@, = (A3 + &EZ) (Sjv, + ej wl) aj  O,, 

RoA,)Aw2 = T ~ ? , ( S ~ V ,  + ej w,) aJ O,, 

with boundary conditions: 

v2 = D Z ~ ,  = D ~ V ,  = 0, D = a8, 
Dw, = D3w, = D ~ w ,  = D ~ w ,  = 0, 

- 0 2 0 ,  = 0 4 6 3 ,  = D6@, = 0. 2 -  

We now try to find X ,  in the form 
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The z-dependences of the inhomogeneities of the equations (6.5) are proportional 
to sin2nz or cos2nz. One therefore gets a solution satisfying the boundary 
conditions, if the expressions F ,  G ,  and H are of the form 

(6.7) 

F(&, z )  = - &nu 2x(1 - $kl) sin 2nz/o($kl), 

G(#*z, 4 = - - 
7n2a28( 1 - #kl) COS 2nZ 

[4n2 + 2a2P + &)I D($kl) ’ 

7. Order e3 
The system of equations is 

R, WX3 + ux3 = &(X,, X2) + &(X,, X,) - R, wx,, (7.1) 

R, W 2 3  + uxs = Q(21, X,)  + &(XI, 2 2 )  + Q ( x 2 ,  X i )  + &(X2, xi) 
- R, Wr?, + g2 V&. (7.2) 

The solubility conditions, which postulate that the right-hand sides of (7.1) and 
(7.2) be orthogonal to all first-order solutions Xi, are of the form 

0 = ( X L  &(X,, X , )  + &(X,, X , ) )  - R,<Xi,  WX,), (7.3) 

-R , (X i ,  W3 , )+r72(x ; ,  Vk,). (7.4) 

0 = ( X l ,  &(gl, X2) + Q(X1, x2) + Q(X2,  XI) 4 Q(X2, 

Before studying these equations more closely we transform the first term of the 
right-hand side of (7.3) by partial integration: 

( X i ,  &(Xi ,  X , ) )  = - (O,ajOl(sjv,+€jwl)),,, 

( X i ,  ax , ,  X I ) )  = (v ,q@;aj  0,) - Wj@i a j  @l),n, 

SjO;8,@, = 0 (see Schliiter et al. (1965)). 

Substituting this in (7.3) and taking into account the corresponding expressions 
for the first-order and second-order functions, one obtains with 

X i  = 9 WE ( n =  -00, ..., +m), 6 



The horizontal averaging only makes a contribution if the sum of the four 
k-vectors becomes zero, i.e. if it holds that: (i) k = n, I = -m;  (ii) 1 = m, k = -m, 
k + n; (iii) m = n, k = - 1 ,  k + n, k $; -n. 

For further simplification we introduce the following matrix Tik: 
- 2Li,-*,%,* for i = +_ k, 

(7.7) 1 i - 2(Li,-k,ki f Lik,-k,i + L-d,$kk) otherwise. 
qk = 

According to the definition of L this has the symmetry properties 

Ti, = T-i,k = q , - k *  (7 .8)  
In  contrast to the non-rotating case it should be observed that q k  is not sym- 
metric. Note that all diagonal elements are equal. Equations (7.5) can be written 
as follows: 

K = a2(fh)m. I 
From the symmetry properties of Ti, it follows that only N equations are inde- 
pendent and together with the normalization condition 

(7.10) 

we obtain an inhomogeneous system of N -+ 1 equations for determining R, 
and lCk12. This means that the manifold of first-order solutions is restricted by 
the non-linear terms of the equations. 

8. Discussion of the steady-state solubility condition 
For N = 1, (7.9) and (7.10) read 

ICllz = 4, R,K = frT,,. 
For N = 2 ,  i.e. for rectangles and squares, it is found by elimination from (7.9) 
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where T,, = T22 has been used. The condition for the existence of solutions with 
IC,lz = IC,J2 considered by Veronis (1958) is that TI, = T2,. This, however, is only 
the case for squares and limiting rectangles. 
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FIGURE 1. P,  Taylor number; a, angle between the two k-vectors. In the convex domain 
rectangles do not exist and rolls are unstable. 

Furthermore, one can see that rectangular solutions can only exist if T,, - T,, 
and T,, - T,, have the same sign. Figure 1 shows the region in which this condition 
is violated. Certain Taylor numbers thus disallow certain patterns of rectangles 
characterized by the angle a. For T -+ cc squares and limiting rectangles are the 
only remaining possibilities. 

If N >, 3 one obtains in the regular case, i.e. if the angles formed by adjacent 
k-vectors are equal, the solutions 

1 N  R2K = - C T 2Nke1  "'* 
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9. Eigenvalue G~ 

excluded by (7.9) and (7.10), we investigate (7.6). 
To obtain information about the stability of the steady-state solutions not 

Disturbances coincident with the basic vectors of the cell pattern 
First we consider disburbances with 4 = 0 except in the case of k-vectors for 
which Ci + 0 is valid. By transforming (7.6) in the same way as (7.5) the following 
system of equations is derived: 

This homogeneous system of equations for the fl$ only has a non-trivial solution 
if the determinant of the matrix of the coefficients Ci vanishes. 

det l&?g28ik+qkC$CzI = 0 ( i , k  = - N ,  ..., + N )  

or 
M 

= 0 ( i , k  = - N ,  ..., + N ) .  

If we subtract the ( -  k)th column from the kth and add the ith row to the 
( - i)th and use the symmetry properties of Tik,  it is found that N eigenvalues g2 

are equal to zero. The remaining eigenvalues satisfy the equation 

detI&fgz8ik+2!&ICk12) = 0 ( ; , k =  1 ,..., N ) .  (9.3) 

Since TIC is generally not symmetric one expects complex eigeiivalues g2. Let 
Xi, be the symmetric and Aik the antisymmetric part of !& 

(9 .4)  

We prove that JSik > qi > 0 ( k  =!= i) (9.5) 
q k  = Xi, + Aik, Xi, = Ski, A,, = - Aki. 

is valid, the consequence of which, as we shall see, is that all three-dimensional 
flows are unstable. 

The second part of the inequality (9.5) follows direct from the definition of L 
in (7.5a) 

For proving the inequality Si, > Tii one has to compute the sign of D($kl) 
occurring in the expression for L. 

Eliminating 72 and R, with the aid of (5.5) and (5.4), respectively, and 
arranging in powers of a2 we find for D(&) defined in (6.7): 

D(+kz) = - 2a6(4ail + 4 - 3akz) - 12a4n2(4& - akl + 1) - 9Oa277*ak, - 60n6 < 0 

Ti< = -2L-i,iii = &‘S2 > 0. 

for 
Thus 



61 8 

and consequently 
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S i k - q i  = - ( L  i, -k, ki + Lk, -i,ik + Lik, -k,i + Lkg, -{, k )  > 0 for k $1 i. 
It will now be shown that for iV > 1 relation (9.5) implies the existence of an 
eigenvalue c2 with positive real part. Adding all columns of the determinant (9.3) 
and taking (7.9) into account yields 

(9.6) 

(i) g2 = -2R2K/lM, (9.7) 

or (ii) detlBik+c2MSircJ = 0 (i,Ic= 1, ..., N-1) (9.8) 

i (2R2K+a,M)det IBik+cr2MSik] = 0,  

Bik = 2 ( Z k - T N k )  ICkI2, ( i , k  = 1, ..., N -  1). 

Equation (9.6) is satisfied if: 

is valid. We form the trace tr of the matrix Bik 
N -  1 N-1  

i=l i=l 
tr = C Bii = C 2(T,,-TNi) ICi12 

N - 1  

i = l  
= ZT,, C ICi12-2R2K+2TNNICN12 = !l?ii-2R2K. (9.9) 

Here (7.9) and (7.10) were again used. Multiplying the ith equation in the system 
(7.9) by ICi12 and then adding all the equations gives, because of (7.10), 

(9.10) 

Substituting this in (9.9) and using the inequality (9.5) yields 

which indicates that the sum of the roots of the real equation (9.8) is positive. 
Thus it has been shown that for N 2 2 there always exists an eigenvalue c2 

the real part of which is larger than zero. For rolls ( N  = 1) one gets the only 
eigenvalue 

0-2 = - 2R2K/M = - T,,/M < 0, 

i.e. these are stable with respect to disturbances Coincident with the pattern. 

Disturbances not coincident with the basic vector of a roll 
Before one can comment on the stability of the roll solutions, one must consider 
disturbances the k-vectors of which are not coincident with those of the steady- 
state pattern. These produce only diagonal elements in (7.6) and yield the 
continuous eigenvalue 

c2M = Ll , r , - l , r+L-I , r , l , r  = -id%-TJ* 
So we see that the respective neutral curve 7 2  versus a coincides with the curve 
plotted in figure 1 where c(. is now the angle formed by the disturbance k-vector 
k, and the basic steady-state k-vector k,. The critical values are 

7; = 2285.0 0.1, L X ~  = 58' Ifr 0.5". 
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Without numerical computation i t  can be seen that such a critical Taylor 
number must exist. For asymptotically large r ,  that  part of Lklrnn which is pro- 
portional to krnn = sina varies as ?aL, while the other part proportional to 
$,, = cos a varies as e. Thus, for asymptotically large r ,  c2(a) can have either 
sign. 

As in the non-rotating case, we show that for subcritical Taylor numbers 
Malkus’s (1954a, b )  principle of maximum heat transport is valid. According to 
inequality (9.5) and (9.10) 

where the equality sign holds only for N = 1, the case of rolls. Thus the only 
stable flow in the form of rolls possesses absolute minimum R,, i.e.its amplitude 
and therefore its heat transport has an absolute maximum for a certain Rayleigh 
number. 

10. Conclusions 
It has been shown that in the rotating case the convective flow in the form of 

a rectangle does not exist for sufficiently large Taylor numbers. Furthermore, if 
the general rectangle is considered as a superposition of two rolls then the two 
respective amplitudes have to be unequal, except in the case of a square or a 
limiting rectangle. 

The stability calculation yields the following results: (i) there exist stable 
small-amplitude rolls for slightly supercritical Rayleigh number provided r2 < r:. 
All three-dimensional convective flows are unstable; (ii) for T~ > rt no stable 
steady-state convective flow exists in the rotating frame if the Rayleigh number 
is slightly supercritical, i.e. all flows are necessarily time-dependent. 

For the case of infinite Prandtl number considered here it is known that for a 
given T there are no steady-state solutions if R is less than R,(r). Thus, for r2 > r: 
there is no stable steady-state solution at all except in the trivial static state. 
This means: if for a certain supercritical Taylor number the Rayleigh number is 
increased from a subcritical value, then there is a transition from pure conduction 
to a time-dependent convective flow. 

For subcritical Taylor numbers the only stable flow in the form of rolls has 
maximum amplitude for a certain Rayleigh number and thus Malkus’s hypothesis 
of maximum heat transport has been proved in this case. If this principle has 
general validity, then of all possible solutions the time-dependent flow should 
transport most heat for supercritical Taylor numbers. However, this interesting 
question has not yet been answered. 

Calculations for the more realistic case of finite Prandtl number and rigid 
boundary conditions are in progress. 

This work was performed under the terms of the agreement on association 
between the Institut fiir Plasmaphysik and Euratom. 
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